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Parameter Bounds for Discrete-Time Hammerstein
Models With Bounded Output Errors

V. Cerone and D. Regruto

Abstract—In this note, we present a two-stage procedure for deriving pa-
rameters bounds in Hammerstein models when the output measurement
errors are bounded. First, using steady-state input–output data, parame-
ters of the nonlinear part are tightly bounded. Then, for a given input tran-
sient sequence we evaluate tight bounds on the unmeasurable inner signal
which, together with noisy output measurements are used for bounding the
parameters of the linear dynamic block.

Index Terms—Bounded uncertainty, errors-in-variable, Hammerstein
model, linear programming, output errors, parameter bounding.

I. INTRODUCTION

Most physical systems are inherently nonlinear, and, though in some
cases they can be represented by linear models over a restricted oper-
ating range, only nonlinear representations are adequate for their de-
scription. A wide class of nonlinear systems, also called block-ori-
ented systems, can be modeled by interconnected memoryless non-
linear gains and linear subsystems. Nonlinearities may enter the system
in different ways: either at the input or at the output end or in the feed-
back path around a linear model. The configuration we are dealing with
in this note, commonly referred to as a Hammerstein model, is shown
in Fig. 1; it consists of a static nonlinear partN followed by a linear
dynamic system. The identification of such a model relies solely on
input–output measurements, while the inner signalxt, i.e., the output
of the nonlinear block, is not assumed to be available.

Identification of the Hammerstein structure has attracted the atten-
tion of many authors, as can be seen in [1] and [2]. Existing identi-
fication procedures can be roughly classified on the basis of the rep-
resentation (parametric or nonparametric) chosen to model the non-
linear and the linear subsystems. As far as the estimation of the non-
linear block is concerned, in the parametric approach the nonlinearity
is usually modeled by a polynomial with a finite and known order or,
more generally, with a series expansion of a known basis of nonlinear
functions (see, e.g., [3]–[5]). On the contrary, in the nonparametric ap-
proach noa priori information on the structure of the nonlinearity is
assumed to be available and the mapping between the input signal and
the intermediate signal might not be finitely parameterizable. Thus, in
that case, only mild prior assumptions are made, e.g., continuity and
piecewise smoothness [6] or membership to some very general class of
functions [7]. As far as the estimation of the linear block is concerned
most of the contributions use parameterized structures like autoregres-
sive with exogenous input (ARX), finite-impulse response (FIR), or
output error models while some works assume a nonparametric de-
scription based only on the stability of the system (see, e.g., [6] and
[7]). Different methods were proposed in the literature to estimate the
parameters of the nonlinear static block and the linear dynamic part ei-
ther iteratively or simultaneously. Among the noniterative algorithms,
we mention the over-parameterization method proposed by Chang and
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Fig. 1. Single-input–single-output (SISO) Hammerstein model.

Luus in [4] which has been extended by Hsia in [5] to deal with the case
of correlated noise and by Bai in [8] which provides a two stage glob-
ally optimal algorithm. Further noniterative solutions include the ap-
proach based on proper extension of subspace model identification [9],
the blind approach proposed in [10] and the method proposed in [11]
in which a closed form solution to the problem of minimum-variance
approximation of nonlinear systems by means of Hammerstein models
is presented in the case of white noise input. Furthermore, Stoica and
Söderström [12] proposed a parametric instrumental variable method
which, in the presence of either a strictly persistently exciting sequence
or a white noise, provides consistent estimates. Iterative methods, in-
troduced in [3], are based on the idea of alternate estimation of the pa-
rameters of the linear and the nonlinear subsystems. The main problem
with iterative procedures is to prove convergence of the estimate under
general conditions. In [13], it is shown that the algorithm proposed in
[3] can diverge. Recently, Ranganet al. in [14] have proposed a modi-
fication of the standard iterative algorithm that allows the above men-
tioned convergence problem to be overcome, provided that the linear
subsystem is FIR and the input signal is white noise. Other proposed
iterative procedures are the algorithms based on Bussgang’s theorem
(see, e.g., [15] and [16]) and the one proposed in [17]. On the nonpara-
metric side, most of the methods are based either on the estimation of
a nonparametric kernels regression (see, e.g., [7] and [18]) or on the
property of the Fourier series representation (see, e.g., [6] and [19]).

In all of the papers previously mentioned, the authors assume that
the measurement error�t is statistically described. However, there are
many cases where in practice eithera priori statistical hypotheses are
seldom satisfied or the errors are better characterized in a determin-
istic way. Some examples are given by systematic and class errors in
measurement equipments, and rounding and truncation errors in digital
devices. A worthwhile alternative to the stochastic description of mea-
surement errors is the bounded-errors characterization, where uncer-
tainties are assumed to belong to a given set. In the bounding context,
all parameter vectors belonging to thefeasible parameter set(FPS),
i.e. parameters consistent with the measurements, the error bounds and
the assumed model structure, are feasible solutions of the identifica-
tion problem. The interested reader can find further details on this ap-
proach in a number of survey papers (see, e.g., [20] and [21]), in the
book edited by Milaneseet al. [22], and the special issues edited by
Norton [23], [24]. To the best of our knowledge, only few contribu-
tions can be found which address the identification of Hammerstein
models when the measurement error�t is supposed to be bounded.
Belforte and Gay [25] considered a Hammerstein model where the
linear block is described by an ARX model. They proposed a solu-
tion through the introduction of a linearized augmented Hammerstein
model (see, e.g., [4] and [8]), whose parameters are identified first using
any algorithm available in the parameter bounding literature. From
the parameter bounds of such a model, overbounds on both nonlinear
and linear block parameters are then derived. Boutayeb and Darouach
[26] proposed a recursive estimator which provides a single parameter
vector belonging to the feasible parameter region defined on a suitable
finite horizon time. Garulliet al. [27] considered the identification of
low complexity approximate Hammerstein models for a class of non-
linear systems. They proposed a procedure for the computation of the
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Chebichev conditional center of the FPS when the noise is bounded in
either`1 or `2 norm.

In this note, we consider the identification of SISO Hammerstein
models when the nonlinear block can be modeled by a linear combi-
nation of a finite and known number of nonlinear static functions, the
linear dynamic part is described by an output error model and the output
measurement errors are bounded. We present a two-stage identification
procedure. First, parameters of the nonlinear block are tightly bounded
using input–output data collected from the steady-state response of the
system to a set of step inputs with different amplitudes. Then, through
a dynamic experiment, for allut belonging to a given input transient
sequencefutg, we compute tight bounds on the inner signal which,
together with noisy output measurements are used for bounding the
parameters of the linear part.

II. PROBLEM FORMULATION

Consider the SISO discrete-time Hammerstein model depicted in
Fig. 1, where the nonlinear block maps the input signalut into the un-
measurable inner variablext through the following nonlinear function:

xt =

n

k=1

k k(ut); t = 1; . . . ; N (1)

where( 1; . . . :;  n) is a known basis of nonlinear functions;N is the
length of the input sequence. The linear dynamic part is modeled by a
discrete-time system which transformsxt into the noise-free outputwt

according to the linear difference equation

A(q�1)wt = B(q�1)xt (2)

whereA(�) andB(�) are polynomials in the backward shift operator
q�1, (q�1wt = wt�1)

A(q�1) = 1 + a1q
�1 + � � �+ anaq

�na (3)

B(q�1) = b0 + b1q
�1 + � � �+ bnbq

�nb
: (4)

In line with the work done by a number of authors, we assume that:
1) the linear system is asymptotically stable (see, e.g., [12], [18], and
[28]–[30]); 2) nb

j=0
bj 6= 0, that is, the steady-state gain is not zero

(see, e.g. [28]–[30]); and 3) the onlya priori information needed is
an estimate of the process settling-time (see, e.g., [31]). Letyt be the
noise-corrupted output

yt = wt + �t: (5)

Measurements uncertainty is known to range within given bounds��t,
i.e.,

j�tj � ��t: (6)

Unknown parameter vectors 2 Rn and� 2 Rp are defined, respec-
tively, as


T = [1 2 . . . n] (7)

�
T = [a1 . . . ana b0 b1 . . . bnb] (8)

wherena +nb +1 = p. It is easy to show that the parameterization of
the structure of Fig. 1 is not unique. As a matter of fact, any parameters
set~bj = ��1bj , j = 1; 2; . . . ; nb, and~k = �k , k = 1; 2; . . . ; n,
for some nonzero and finite constant�, provides the same input–output

Fig. 2. Steady-state behavior of the Hammerstein model wheng = 1.

behavior. Thus, any identification procedure cannot perceive the differ-
ence between parametersfbj ; kg andf��1bj; �kg. To get a unique
parameterization, in this work, we assume, without loss of generality,
that the steady-state gain of the linear part be one, that is

g =

nb

j=0
bj

1 + na

i=1
ai

= 1: (9)

In this note, we address the problem of deriving bounds on parameters
 and� consistently with given measurements, error bounds and the as-
sumed model structure. In Section III, using steady-state input-output
data, parameters of the nonlinear part are tightly bounded, while in Sec-
tion IV, for a given input transient sequence we evaluate tight bounds on
the unmeasurable inner signal which, together with noisy output mea-
surements are used for bounding the parameters of the linear part. A
simulated example is reported in Section V.

III. A SSESSMENT OFTIGHT BOUNDS ON THENONLINEAR

STATIC BLOCK PARAMETERS

In most physical processes, we can collect a great deal of data, which
often contains steady-state measurements at many different operating
conditions. However, usually, only transient data are used in the iden-
tification process while steady-state measurements are not explicitly
considered. Although data are assumed to be generated by a persis-
tently exciting input, in practice a given plant might only be mildly
perturbed around operating conditions, leading to a shortage of proper
nonlinear information in the transient data. In this note, we exploit
steady-state operating conditions to bound the parameters of the non-
linear static block. The noise corrupted output sequence is collected
from the steady-state response of the system to a set of step inputs with
different amplitudes. For each value of the step input amplitude, only
one steady-state value of the noisy output is considered. Thus, given a
set of step inputs withM different amplitudes,M steady-state values
of the output are taken into account. We only assume to have a rough
idea of the settling time of the system under consideration, in order
to know when steady-state conditions are reached, so that steady-state
data can be collected. Indeed, under conditions 1), 2), and 3) stated
in Section II, combining (1), (2), (5), and (9) at steady-state, we get
the following input–output description involving only the parameters
of the nonlinear block:

�ys =

n

k=1

k k(�us)��s; s = 1; . . . ;M (10)

where�us, �ys and��s are steady-state values of the known input signal,
output observation and measurement error respectively;M � n is the
number of the steady-state samples. A block diagram description of
(10) is depicted in Fig. 2. The feasible parameter region of the static
nonlinear block is defined as

D =  2 Rn : �ys =

n

k=1

k k(�us) + ��s;

j��sj � ���s; s = 1; . . . ;M (11)
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wheref���sg is the sequence of bounds on measurements uncertainty.
From definition (11) it can be seen thatD is exactly described by the
following constraints in then-dimensional parameter space:

�'Ts  � �ys +���s �'Ts  � �ys ����s (12)

where

�'s = [ 1(�us)  2(�us)  3(�us) . . . n(�us)]
T (13)

for s = 1; 2; . . . ;M . This exact description ofD will be used in
the next section when deriving tight bounds on the unmeasurable inner
signalxt.

SinceD is a convex polytope, whose shape may become quite com-
plex for increasingn andM , an outer bound to it such as an ellipsoid
or a box is often computed. In this note, we consider an orthotope-outer
bounding setB containingD

B =  2 Rn : j = 
c
j + �j ; j�j j � �j ; j = 1; . . . ; n

(14)
where

j
c =

minj + maxj

2
�j =

maxj � minj

2
(15)


min

j = min
2D

j 
max

j = max
2D

j : (16)

The setB as defined in (14) is a tight orthotope outer-bound on the
exact feasible parameter regionD and its evaluation requires the so-
lution of 2n linear programming (LP) problems withn variables and
2M constraints. The significance of central estimatescj and param-
eter uncertainty bounds�j , j = 1; 2; . . . ; n, which in turn defineB

through (14), will be shown in the numerical simulation introduced in
Section V.

IV. BOUNDING THE PARAMETERS OF THELINEAR DYNAMIC MODEL

In the second stage of our procedure, we evaluate bounds on the
parameters of the linear dynamic block. Given the exact description of
the feasible parameter setD , tight bounds on the inner unmeasurable
signalxt can be computed for all inputsut belonging to a transient
sequencefutg, through the following expressions

x
min

t = min
2D

'
T

t  x
max

t = max
2D

'
T

t ; t = 1; 2; . . . ; N (17)

where't = [ 1(ut)  2(ut)  3(ut) . . . n(ut)]
T. Computation of

bounds in (17) requires the solution of2N LP problems withn vari-
ables and2M constraints.

Remark: A similar approach is taken by Belforte and Gay [25] who
propose the computation of bounds onxt in order to refine the evalua-
tion of parameter uncertainty intervals of the linear system. However,
the bounds they compute are not guaranteed to be tight since their eval-
uation is based on outer approximations of the nonlinear block param-
eter set. On the contrary, (17) of this work provides tight bounds on
xmint andxmaxt since they are computed on the basis ofD which is an
exact description of the nonlinear block parameter region.

If we define the following quantities:

x
c
t =

xmint + xmaxt

2
�xt =

xmaxt � xmint

2
(18)

a compact description ofxt in terms of its central valuexct and its
perturbation�xt is as follows:

xt =x
c
t + �xt (19)

j�xtj ��xt: (20)

Fig. 3. Errors-in-variables setup for bounding the parameters of the linear
system.

We can now formulate the identification of the linear model in terms
of the noisy output sequencefytg and the uncertain inner sequence
fxtg as shown in Fig. 3. Such a formulation is commonly referred to
as an errors-in-variables (EIV) problem, i.e., a parameter estimation
problem in a linear-in-parameter model where the output and some or
all the explanatory variables are uncertain.

As a matter of fact, combining (2)–(5) and (19), we get

yt = �

na

i=1

(yt�i � �t�i)ai +

nb

j=0

x
c
t�j + �xt�j bj + �t: (21)

The definition of the feasible parameter region for the linear system is

D� = � 2 Rp : A(q�1)[yt � �t] = B(q�1) [xct + �xt] ;

g = 1; j�tj � ��t; j�xtj � �xt; t = 1; . . . ; Ng (22)

whereg = 1 takes account of condition (9) on the steady-state gain.
From (21) it can be seen that consecutive regressions are related deter-
ministically by uncertain output samples and uncertain input samples;
that occurrence qualifies the problem as a dynamic EIV. It is referred to
as a static EIV problem when the uncertain variables appearing in suc-
cessive regressions are supposed to vary independently. The relations
between successive regressions in the dynamic EIV case give rise to
possibly nonlinear exact parameter bounds, which could be not easily
and exactly computed [32]. On the other end, in the static EIV case
exact parameter bounds are piecewise linear and, although generally
non convex, the feasible parameter region is the union of at most2p

convex sets: each being the intersection of the FPS with a single or-
thant of thep-dimensional parameter space (a detailed discussion on
the geometrical and topological structure of the feasible parameter re-
gion for static EIV problems can be found in [33]). Thus, as shown in
[32], the FPS of static EIV can be more conveniently handled than the
FPS of dynamic EIV. That motivates the use, in this note, of results
from the static EIV [33]; since in model (21) the uncertain variables
appearing in successive regressions are deterministically related, only
outer approximations of the exact feasible parameter region will be ob-
tained. Thus, in this work, a polytopic outer approximationD0

� of the
exact FPSD�, i.e.D0

� � D� , will be presented, together with an or-
thotope-outer bounding setB� of D0

� , which provides parameter un-
certainties intervals. When we apply results from [33] to our problem
we get the following description of the feasible parameter setD0

� at the
single timet

(�t ���t)
T
� � yt +��t (�t +��t)

T
� � yt ���t (23)

[1 . . . 1 � 1 � 1 . . . � 1] � = �1 (24)

where

�
T

t = [�yt�1 . . .� yt�na x
c
t x

c
t�1 . . . x

c
t�nb] (25)

��Tt = [��t�1sgn(a1) . . . ��t�nasgn(ana) �xtsgn(b0)

�xt�1sgn(b1) . . . �xt�nbsgn(bnb)] : (26)

Equation (24) takes account of condition (9) on the steady-state gain.
The orthotope-outer bounding setB� is defined as

B� = � 2 Rp : �j = �
c
j + ��j ; j��j j � ��j ; j = 1; . . . ; p (27)
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where

�
c
j =

�minj + �maxj

2
��j =

�maxj � �minj

2
(28)

�
min

j = min
�2D

�j �
max

j = max
�2D

�j : (29)

Parameter vectorsc and�c are Chebishev centers in the`1 norm
of D andD0� respectively and are commonly referred to as central
estimates. The computational aspects related to the evaluation of the
orthotope-outer bounding setB� are briefly discussed in the following
subsection.

Computation ofB�: In principle, the computation of�minj and
�maxj , j = 1; . . . ; p, which defineB�, requires the solution of2p2p

LP problems (the coefficient2p accounts forpminimization problems
andp maximization problems while2p is the number of orthant in the
p-dimensional parameter space in which the above2p optimization
problems must be carried out) with2N + p + 1 constraints (2N
constraints derive from (23) witht = 1; . . . ; N ; p is the number of
constraints defining the orthant in the parameter space; last, there is an
equality constraint derived from the steady-state gain normalization
condition (9)). In practice, however, the computational load can be
significantly reduced if the signs of�j , j = 1; . . . ; p are a-priori
known. Indeed, in that case the number of LP problems dramatically
decreases to2p. If not available, information about the signs of
�j can be achieved through a point estimate (using least squares
estimates, for example) which will indicate the orthant where the
optimization should be carried out. If the obtainedB� is such that
some of�minj (�maxj ) are zero, then the optimization problems should
be also solved in the orthants characterized by�j < 0 (�j > 0).

As to the computational complexity of methods for solving LP
problems, it is well known that the ellipsoidal algorithm proposed by
Khachiyan [34] seems not to perform satisfactorily, although it shows
a worst case polynomial complexity. On the contrary, the simplex
method which is widely used in practice and for which Klee and
Minty [35] constructed pathological examples that clearly prove its
worst case exponential complexity, performs quite wellon the average
(see, e.g., [36]). Consequently, the lack of a polynomial bound on the
simplex method is more of theoretical interest than of practical one.

V. SIMULATED EXAMPLE

In this section, we illustrate the proposed parameter bounding proce-
dure through a numerical example. The system considered here is char-
acterized by (1), (2), and (5) with1 = 1, 2 = 1, 3 = 1,  1(ut) =
ut;  2(ut) = u2t ;  3(ut) = u3t ; A(q�1) = (1� 1:1q�1 + 0:28q�2)
andB(q�1) = (0:1q�1 + 0:08q�2). Thus, the true parameter vec-
tors are = [1 2 3]

T = [1 1 1]T and� = [a1 a2 b1 b2]
T =

[�1:1 0:28 0:1 0:08]T. Two different structures of measurement errors
are considered: relative and absolute error. From the simulated tran-
sient sequencefwt; �tg and steady-state dataf �ws; ��sg, the SNR and
SNR are evaluated, respectively, through

SNR = 10 log
N

t=1
w2

t

N

t=1
�2t

; SNR = 10 log
M

s=1
�w2

s

M

s=1
��2s

: (30)

A. Relative Errors

First, bounded relative output errors have been considered when sim-
ulating the collection of both steady state and transient data. More pre-
cisely, we assumed�t = �

y
t yt, j�

y
t j � ��yt , ��s = ��ys �ys, j��

y
s j �

���ys ; wheref�yt g andf��ysg are random sequences belonging to the
uniform distributionsU [���yt ;+��

y
t ] andU [����ys ;+���ys ] respec-

tively. Bounds on steady-state and transient output measurement errors

TABLE I
RELATIVE ERROR—NONLINEAR BLOCK PARAMETER CENTRAL ESTIMATES

( ) AND PARAMETER UNCERTAINTY BOUNDS (� ) AGAINST VARYING

MEASUREMENTSUNCERTAINTY (�� ) AND SIGNAL-TO-NOISERATIO (SNR)

TABLE II
ABSOLUTE ERROR—NONLINEAR BLOCK PARAMETER CENTRAL ESTIMATES

( ) AND PARAMETER UNCERTAINTY BOUNDS(� ) AGAINST (SNR)

were supposed to have the same value, i.e.,��yt = ���ys
�
= ��y . Five

different values of uncertainty bounds were considered:��y = 0:1%,
1%, 5%, 10%, 20%. For a given��y , the length of steady-state and
the transient data areM = 10 andN = [100; 1000] respectively.
The steady-state input sequencef�usg belongs to the interval[�2;+2],
while the transient input sequencefutg belongs to the uniform dis-
tributionU [�2;+2]. Results about the nonlinear and the linear block
are reported in Tables I, III, and V, respectively. For low noise level
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TABLE III
RELATIVE ERROR—LINEAR SYSTEM PARAMETER CENTRAL ESTIMATES (� )

AND PARAMETER UNCERTAINTY BOUNDS (�� ) AGAINST VARYING

MEASUREMENTSUNCERTAINTY (�� ) AND SNR WHEN N = 100

TABLE IV
ABSOLUTE ERROR—LINEAR SYSTEM PARAMETER CENTRAL ESTIMATES (� )

AND PARAMETER UNCERTAINTY BOUNDS (�� ) AGAINST SNR
WHEN N = 100

(��y = 0:1%) and for allN , the central estimates of both the non-
linear static block and the linear model are consistent with the true pa-

TABLE V
RELATIVE ERROR—LINEAR SYSTEM PARAMETER CENTRAL ESTIMATES (� )

AND PARAMETER UNCERTAINTY BOUNDS (�� ) AGAINST VARYING

MEASUREMENTSUNCERTAINTY (�� ) AND SNR WHEN N = 1000

TABLE VI
ABSOLUTEERROR—LINEAR SYSTEM PARAMETER CENTRAL ESTIMATES (� )

AND PARAMETER UNCERTAINTY BOUNDS (�� ) AGAINST SNR
WHEN N = 1000

rameters. For higher noise level(��y � 1%), bothc and�c give
satisfactory estimates of the true parameters. As the number of obser-
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vations increases (fromN = 100 to N = 1000), parameter uncer-
tainty bounds�j and��j decreases unsurprisingly.

B. Absolute Errors

Next, bounded absolute output errors have been considered when
simulating the collection of both steady state data,f�us; �ysg, and
transient sequencefut; ytg. Here, we assumedj�tj � ��t and
j��sj � ���s where�t and ��s, are random sequences belonging to
the uniform distributionsU [���t;+��t] and U [����s;+���s]
respectively. Bounds on steady-state and transient output measurement
errors were supposed to have the same value, i.e.,��t = ���s

�
= ��,

and were chosen in such a way as to simulate five different values of
signal to noise ratio at the output, namely 60, 50, 40, 30, and 20 dB.
For a given��, the length of steady-state and the transient data are
M = 10 andN = [100; 1000], respectively. The steady-state input
sequencef�usg belongs to the interval[�2;+2], while the transient
input sequencefutg belongs to the uniform distributionU [�2;+2].
Results about the nonlinear and the linear block are reported in
Tables II, IV, and VI, respectively. For low noise level (SNR= 60 dB)
and for allN , the central estimates of both the nonlinear static block
and the linear model are consistent with the true parameters. For
higher noise level(SNR � 40 dB), bothc and�c give satisfactory
estimates of the true parameters. As the number of observations
increases (fromN = 100 to N = 1000), parameter uncertainty
bounds�j and��j decreases, as expected.

VI. CONCLUSION

A two-stage parameter bounding procedure for SISO Hammerstein
models for systems with bounded output errors has been outlined. First,
using steady-state input-output data, parameters of the nonlinear block,
which was assumed to be modeled by a linear combination of a fi-
nite and known number of nonlinear static functions, have been tightly
bounded. Then, for a given input transient sequence we have computed
bounds on the unmeasurable inner signal which, together with output
noisy measurements have been used to overbound the parameters of
the linear part. The numerical example showed the effectiveness of the
proposed procedure.
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